
CS61B Spring 2024

Graphs, Heaps
Discussion 08

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

3/13
Mid-semester

Survey Due

3/15
Lab 8 Due

Project 2B/C
Checkpoint and
Design Doc Due

MT2 Review Session

3/18
Homework 3 Due

3/21
Midterm 2

CS61B Spring 2024

Content Review

CS61B Spring 2024

Trees, Revisited (and Formally Defined)

Trees are structures that follow a few basic rules:

1. If there are N nodes, there are N-1 edges

2. There is exactly 1 path from root to every other node

3. The above two rules means that trees are fully connected and contain no cycles

A parent node points towards its child.

The root of a tree is a node with no parent nodes.

A leaf of a tree is a node with no child nodes.

CS61B Spring 2024

Graphs

Trees are a specific kind of graph, which is more generally defined as below:

1. Graphs allow cycles

2. Simple graphs don’t allow parallel edges (2 or more edges connecting the same two nodes) or self

edges (an edge from a vertex to itself)

3. Graphs may be directed or undirected (arrows vs. no arrows on edges)

Check! How would you describe each of these graphs (in terms of directedness and cycles)?

CS61B Spring 2024

Graph Representations

Adjacency lists list out all the nodes connected to each node in our graph:

A

B

C

D

E

F

A B , C

B E

C F

D B

E

F D

CS61B Spring 2024

Graph Representations

Adjacency matrices are true if there is a line going from node A to B and false otherwise.

A

B

C

D

E

F

A B C D E F

A 0 1 1 0 0 0

B 0 0 0 0 1 0

C 0 0 0 0 0 1

D 0 1 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 1 0 0

CS61B Spring 2024

Breadth First Search

Breadth First Search means visiting nodes based off of their distance to the source, or starting point. For

trees, this means visiting the nodes of a tree level by level. Breadth first search is one way of traversing a

graph.

BFS is usually done using a queue.

A

B C

D E

BFS(G):
Add G.root to queue
While queue not empty:

Pop node from front of queue and visit
for each immediate neighbor of node:

Add neighbor to queue if not
already visited

CS61B Spring 2024

Depth First Search

Post-order traversals visit the
child nodes before visiting the
parent nodes.*

Depth First Search means we visit each subtree (subgraph) in some order recursively. DFS is usually done

using a stack. Note that for graphs more generally, it doesn’t really make sense to do in-order traversals.

In-order traversals visit the left
child, then the parent, then the
right child.

Pre-order traversals visit the
parent node before visiting
child nodes.*

A

B E

C D

D

B E

A C

E

C D

A B

* in binary trees, we visit the left child before right child

CS61B Spring 2024

General Graph DFS Pseudocode (Stack)

A

B

C

D

E

F

DFS(start):
stack = {start}, visited = {}
while stack not empty:

n = top node in stack
visited.add(n)
preorder.add(n)
if n has unvisited neighbors:

push n’s next unvisited
neighbor onto stack

else:
pop n off top of stack
postorder.add(n)

return preorder, postorder

Preorder: “Visit the node as soon
as it enters the stack: myself, then
all my children”

Postorder: “Visit the node as soon
as it leaves the stack: all my
children, then myself”

* in-order for binary trees:
DFSInorder(T):

DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

“Visit my left child, then myself, then my right child”*
* can be done with a stack, but usually easier with recursive

CS61B Spring 2024

General Graph DFS Pseudocode (Recursive)

A

B

C

D

E

F

DFS(start):
preorder.add(start)
visited.add(start)
for each neighbor of start:

if neighbor not visited:
DFS(neighbor)

postorder.add(start)
return preorder, postorder

* in-order for binary trees:
DFSInorder(T):

DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

“Visit my left child, then myself, then my right child”*
* can be done with a stack, but usually easier with recursive

Note: technically can add:
if start.neighbors is empty
 preorder.add(start)
 visited.add(start)
 postorder.add(start)
as base case, but the code on
the left will skip the loop if
neighbors is empty.

CS61B Spring 2024

Heaps

Heaps are special trees that follow a few invariants:

1. Heaps are complete - the only empty parts of a heap are in the bottom row, to the right

2. In a min-heap, each node must be less than or equal to all of its child nodes. The opposite is true for

max-heaps: each node must be greater than or equal to all of its child nodes.

0

5 1

7 8 2

Check! What makes a binary min-heap different from a binary search tree?

CS61B Spring 2024

Heap Representation

We can represent binary heaps as arrays with the following setup:

1. The root is stored at index 1 (not 0 - see points 2 and 3 for why)

2. The left child of a binary heap node at index i is stored at index 2i

3. The right child of a binary heap node at index i is stored at index 2i + 1

0

5 1

7 8 2

[-, 0, 5, 1, 7, 8, 2]

Check! What kind of graph traversal does the
ordering of the elements in the array look like
starting from the root at index 1?

CS61B Spring 2024

Insertion into (Min-)Heaps

0

5 1

7 8 2 -1

0

5 -1

7 8 2 1

-1

5 0

7 8 2 1

We insert elements into the next available spot in the heap and bubble up as necessary: if a node is smaller
than its parent, they will swap. (Check: what changes if this is a max heap?)

CS61B Spring 2024

Root Deletion from (Min-)Heaps

0

5 1

7 8 2 4

4

5 1

7 8 2

1

5 4

7 8 2

1

5 2

7 8 4

We swap the last element with the root and bubble down as necessary: if a node is greater than its children,
it will swap with the lesser of its children. (Check: what changes if this is a max heap?)

CS61B Spring 2024

Heap Asymptotics (Worst case)

Operation Runtime

insert Θ(logN)

findMin Θ(1)

removeMin Θ(logN)

CS61B Spring 2024

Worksheet

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the following
traversals of this BST.

10

3

1 7

12

11 14

13 15

Preorder:

Inorder:

Postorder:

BFS:

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the following
traversals of this BST.

10

3

1 7

12

11 14

13 15

Preorder: 10 3 1 7 12 11 14 13 15

Inorder: 1 3 7 10 11 12 13 14 15

Postorder: 1 7 3 11 13 15 14 12 10

BFS: 10 3 12 1 7 11 14 13 15

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder:

BFS:

Stack: 10

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder:

BFS:

Stack: 10 3

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder:

BFS:

Stack: 10 3 1

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1

BFS:

Stack: 10 3

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3

BFS:

Stack: 10

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3

BFS:

Stack: 10 7

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7

BFS:

Stack: 10

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10

BFS:

Stack:

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10

BFS:

Stack: 12

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10

BFS:

Stack: 12 11

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11

BFS:

Stack: 12

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12

BFS:

Stack:

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12

BFS:

Stack: 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12

BFS:

Stack: 14 13

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13

BFS:

Stack: 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14

BFS:

Stack: 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14

BFS:

Stack: 15

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS:

Stack:

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS:

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS:

Queue: 10

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10

Queue: 3, 12

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3

Queue: 12, 1, 7

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12

Queue: 1, 7, 11, 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12 1

Queue: 7, 11, 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12 1 7

Queue: 11, 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12 1 7 11

Queue: 14

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12 1 7 11 14

Queue: 13, 15

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12 1 7 11 14 13

Queue: 15

CS61B Spring 2024

1a Trees, Graphs, and Traversals, Oh My! Write out the inorder
and BFS traversals of this BST.

10

3

1 7

12

11 14

13 15

Inorder: 1 3 7 10 11 12 13 14 15

BFS: 10 3 12 1 7 11 14 13 15

Queue:

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A

B

C

D

E

F

G

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B

C

D

E

F

G

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B ✓

C

D

E

F

G

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B ✓

C ✓

D

E

F

G

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B ✓

C ✓

D ✓ ✓ ✓

E

F

G

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B ✓

C ✓

D ✓ ✓ ✓

E ✓

F

G

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B ✓

C ✓

D ✓ ✓ ✓

E ✓

F

G ✓

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list. What if the graph is undirected?

A

B

D

E

F

C

G

A B C D E F G

A ✓ ✓

B ✓ ✓ ✓

C ✓ ✓

D ✓ ✓ ✓ ✓

E ✓ ✓

F ✓ ✓ ✓ ✓

G ✓

From

To

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A

B

C

D

E

F

G

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A

B

C

D

E

F

G

B, D

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A

B

C

D

E

F

G

B, D

C

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A

B

C

D

E

F

G

B, D

C

F

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list.

A

B

D

E

F

C

G

A

B

C

D

E

F

G

B, D

C

F

B, F, E

F

F

CS61B Spring 2024

1b Trees, Graphs, and Traversals, Oh My! Write out the adjacency
matrix and adjacency list. What if the graph is undirected?

A

B

D

E

F

C

G

A

B

C

D

E

F

G

B, D

A, C, D

B, F

A, B, E, F

D, F

F

C, D, E, G

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:

DFS Post-Order:

Stack:

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A

DFS Post-Order:

Stack: A

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B

DFS Post-Order:

Stack: A, B

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C

DFS Post-Order:

Stack: A, B, C

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:

Stack: A, B, C, F

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F

Stack: A, B, C

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F, C

Stack: A, B

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F

DFS Post-Order:
F, C, B

Stack: A

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D

DFS Post-Order:
F, C, B

Stack: A, D

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B,

Stack: A, D, E

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E

Stack: A, D

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E, D

Stack: A,

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E

DFS Post-Order:
F, C, B, E, D, A

Stack:

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

DFS Pre-Order:
A, B, C, F, D, E, G

DFS Post-Order:
F, C, B, E, D, A, G

Stack:

* if we allow DFS to restart on unmarked nodes,
G would be added to the stack (and ultimately
the last element in both the preorder and
postorder traversals)

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:

Queue: A

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A

Queue: B D

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B

Queue: D C

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B D

Queue: C E F

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B D C

Queue: E F

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B D C E

Queue: F

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B D C E F

Queue:

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B D C E F

Queue: G

CS61B Spring 2024

1c Trees, Graphs, and Traversals, Oh My! Write out the order in
which nodes are visited by DFS pre-order and post-order.

A

B

D

E

F

C

G

BFS:
A B D C E F G

Queue:

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [-]

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- f]

f

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- f h]

f

h

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- f h d]

f

h d

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- d h f]

d

h f

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- d h f b]

d

h f

b

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- d b f h]

d

b f

h

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- b d f h]

b

d f

h

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- b d f h c]

b

d f

h c

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- b c f h d]

b

c f

h d

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- ? c f h d]

???

c f

h

b

d

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- d c f h]

d

c f

h

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- c d f h]

c

d f

h

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- ? d f h]

???

d f

h

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- ? d f h]

???

d f

h

c

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- h d f]

h

d f

CS61B Spring 2024

2a Absolutely Valuable Heaps Draw the heap and its corresponding array
after each operation below.
MinHeap<Character> h = new MinHeap<>();
h.insert(‘f’);
h.insert(‘h’);
h.insert(‘d’);
h.insert(‘b’);
h.insert(‘c’);
h.removeMin();
h.removeMin();

Underlying array: [- d h f]

d

h f

CS61B Spring 2024

2b Absolutely Valuable Heaps

Your friendly TA Allen challenges you to quickly implement an integer max-heap data structure. However,

you already have written a min-heap and you don't feel like writing a whole second data structure. Can you

use your min-heap to mimic the behavior of a max-heap? Specifically, we want to be able to get the largest

item in the heap in constant time, and add things to the heap in 𝚹(log(n)) time, as a normal max heap should.

CS61B Spring 2024

2b Absolutely Valuable Heaps

Your friendly TA Allen challenges you to quickly implement an integer max-heap data structure. However,

you already have written a min-heap and you don't feel like writing a whole second data structure. Can you

use your min-heap to mimic the behavior of a max-heap? Specifically, we want to be able to get the largest

item in the heap in constant time, and add things to the heap in 𝚹(log(n)) time, as a normal max heap should.

For every insert operation, negate the number and add it to the min-heap.

For a removeMax operation call removeMin on the min-heap and negate (or take the absolute value of) the

number returned. Any number negated twice is itself, and since we store the negation of numbers, the order

is now reversed (what used to be the max is now the min).

CS61B Spring 2024

3 Trinary Search Trees
Suppose we build a Trinary Search Tree (TST), which behaves like a BST but allows duplicates, with the following

BST-like invariants:

1. Each node in a TST is a root of a smaller TST
2. Every node to the left of a root has a value “lesser than” that of the root
3. Every node to the right of a root has a value “greater than” that of the root
4. Every node to the middle of a root has a value equal to that of the root
(only new rule)

Describe an algorithm that will print the elements in a TST in descending order. Hint: you might find one of the
traversals we used in Question 1 to be a good starting point to your algorithm here.

CS61B Spring 2024

3 Trinary Search Trees
Example TST:

10

3

1 7

12

11 14

13 15

12

7

10

10

CS61B Spring 2024

3 Trinary Search Trees
Describe an algorithm that will print the elements in a TST in

descending order.

Reverse inorder traversal: given the root of some TST, we

1. reverse onto the right child subtree

2. print the root’s value

3. reverse onto the middle child subtree

4. reverse onto the left subtree.

*The print root value (step 2) and traverse onto the middle child (step 3)

steps can be swapped, because overall the order of the printed values

should be the same

Pseudocode:
traverse(tst):
 if tst is null:
 return
 traverse(tst.right)
 print(tst.value)
 traverse(tst.middle)
 traverse(tst.left)

